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On the basis of the general theory put forward in the preceding paper of the 
same title, we examine the potential energy profiles along the first-order 
Jahn-Teller active modes or along the doubly degenerate modes through 
which the second-order vibronic couplings occur in the cyclopropenyl radical, 
cation, and anion, the cyclopentadienyl radical and anion, the bicyclo[1.1.1] 
pentane-2,4,5-triyl anion and cation, the ~Blu and 3Blu excited states of 
benzene, and the cation and anion radicals of benzene. The geometrical 
structures of these molecules predicted from the potential energy curves 
expanded in the power series of the relevant modes, including up to the cubic 
power are in good agreement with those predicted by using the various MO 
methods and the available experimental ones. 

Key words: Potential energy surfaces--first-order and second-order Jahn- 
Teller effects--conjugated hydrocarbons 

I. Introduction 

In the preceding paper of the same title [1], we have examined the potential 
energy profiles along the first-order Jahn-Teller (FOJT) active modes (Q~ and 
Q2) or the doubly degenerate modes through which the second-order vibronic 
couplings occur (SO coupling modes, Q] and Q~) in conjugated molecules. The 
characteristic feature of our method is to expand the potential energy in the 
power series of the relevant mode, including up to the cubic power. It has been 
shown that although there are cases in which we cannot practically differentiate 

' t between the potential energy profiles along Q~ and Q2 or  Q] and Q2, in so far 
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as we can differentiate between them, a potential energy minimum should always 
be located along Q~ or Q~ that distorts a molecule in a more symmetrical way. 
Further, on the basis of the perturbation theory, the coefficients of various powers 
(up to the third power) in the expansion of the electronic part of potential energy 
in the power series of the relevant mode have been expressed in terms of the 
zeroth-order wavefunctions and energies (Eqs. (21) and (22) of Ref. [1]). 

In this paper, using these equations, we examine the potential energy curves 
along the FOJT active or SO coupling degenerate modes in individual laterally 
conjugated molecules and predict their geometrical structures. 

2. Estimation of  matrix elements 

For the conjugated hydrocarbons which we are concerned with in this paper, we 
invoke the cr-~- separability and express the total energy, E, as the sum of the 
o--core energy, Eo, and the zr-electronic energy, E~. In the Hiickel-type one- 
electron approximation, E~ can be written as 

E~ = Na + ~ 2p~,~fl~,~ (1) 
IJ,'(~, 

where N, a, p~,~ and/~,~ are the number of 7r-electrons, the Coulomb integral 
(for the 2pz AO of the C atom) [2], the bond order and the resonance integral 
for the / ~ - v  bond, respectively. Since we are concerned only with in-plane 
deformations in conjugated molecules, excited states appearing in various matrix 
elements are taken to be zr-electronic ones. Thus, the various matrix elements 
appearing in the expansion of E in power series of Qi are expressed 

( [ ( O z H )  ~) -~ {ar*'~'~2 (2-2) 

( 1 ( 0 3 H )  I )=(OXE=] -""{Orr  (2-3) 

where/3" and/3" are the second and third derivatives of ~(r) with respect to r. 
Since for the bond-length variation in question (1.3 ~ 1.5 A) the curvature of ~ (r) 
would be very small, we may safely assume that fl(r) varies linearly with r so 
that/3" and/3" can be neglected. It is noted in this respect that in the Pariser-Parr- 
Pople SCF MO formalism, fl (r) can be interpreted as/3~,~ (r) = (fl~,~(r) +/3~(r))/2 
with/3F~(r) =_fl,~(r) --�89 where y~,~(r) is the Coulomb repulsion integral, 

- i t  tit and/3~ and/3~ are assumed to be neglected, since for the reduced bond-distance 
interval the curvature of the/g(r) would also be very small. Further, it is assumed 
that the nuclear anharmonic term (1/6)(03E,~/oQ3)oQai(Qi = Q1 or Q~) can be 
neglected, since it does not play a decisive role in determining the location of 
an energy minimum (see Appendix). Under the above assumptions, Eq. (2-1) 
retains only the first term and Eqs. (2-2) and (2-3) are neglected. The coefficients 
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of the various powers of Qi in Eq. (21) of Ref. [1] are thus given as follows. In 
cases in which the ground state is not degenerate, we have 

OE OH,~ 

I< >r 1{o2   1{o2E4 ,o o *: 
2 \~,2-Jo = 2 \ ~ 2 ) o -  ,~o EZ-Eg (3-2/ 

OH= = ,, 

6\aQ~]o = E Z . t o  , . t o  ( E T .  - 
(3-3) 

Note that in nondegenerate cases we can choose Oo so that (aE/0Qi)o may vanish. 
In cases in which the ground state is (doubly) degerate, 6o is replaced by 6o~ or 
602 and the extra term A (Eq. (22) of Ref. [1]) should be added to the rhs of Eq. 
(3-3). 

In order to estimate the values of the matrix elements appearing in Eqs. (3-1/, 
(3-2), and (3-3), it is practically useful to introduce the transition density p,~ 
between 6~" and ~,~, p~  being the charge density of w-electrons in 6~, and write 

dv (4) 

where V~ is the one electron potential energy operator. Since in this paper we 
are interested mainly in bond distortions in conjugated molecules, we are con- 
cerned with the two-center components (between the nearest neighboring atoms) 
of transition density. The matrix element, Eq. (4), is nonvanishing only when the 
symmetries of p,~ and Qi are the same, that is, the distribution of the two-center 
components of O,~ matches with that of bond distortions in Qi, the positive 
two-center component of p,~ corresponding to the bond shortening and the 
negative one to the bond lengthening. Our approach to the estimation of the 
values of the coefficients of the second and third powers of Q~ (Eqs. (3-2) and 
(3-3)) is then simply to examine whether a given molecule has reasonably low 
excited states that make the  matrix elements (6ol(aH~/aQi)oI6',~) and 
( ~O ~I( O H=/ OQ~)ol 6 ~,) nonvanishing. 

Since a potential energy minimum should in principle be located along Q~ or 
Q], we examine the potential energy curve along Q~ or Q~ by using Eqs. (3-2) 
and (3-3) and determine along which of the mutually opposite directions of Q~ 
or Q~ the energy minimum exists. 

3. Applications 

3.1. Molecules exhibiting the SOJT effects 

We practically treat the molecules in which the ground state is nondegenerate 
and the lowest excited state is doubly degenerate, As has been shown in Ref. [1], 
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in these molecules, (a3E/3Q~3)o = (O3E/aQ~3)o = 0 for the modes of Types 2 and 
3, Q~ and Q~ being the SO coupling modes, and (03E/3Q~3)o~O and 
(a3E/aQ~3)o = 0 for the modes of Type 1. (a2E/aQ~2)o is equal to (a2E/aQ'22)o for 
all the modes. The present problem is to estimate the value of (a3E/3Q~3)o for 
modes of Type 1 and predict along which of the mutually opposite directions of 
Q~ there exists a potential energy minimum. 

In estimating the third derivative of E with respect to Qi (Eq. (3-3)), we take 
into account only the lowest degenerate excited state, ~ and ff12. We assume 
that ~1 and ~b~2 are symmetric and antisymmetric, respectively, with respect to 
operation o- o. Consider first the case where ~o is symmetric with respect to o-v. 
Since Q'~ has been taken to be symmetric with respect to o% the term 
(~o](On~/aQ~)olC,,,)(r o)/(E,- Eo) 2, where 
superfix ~- has been omitted, is nonvanishing, while the similar term including 
~12 as the excited state is vanishing. The sign of the above product of matrix 
elements is determined by that o f ( ~  II(aH~/aQ~)o[~ ~), and which of the potential 
energy curves along the positive and negative directions of Q~ is energetically 
more favorable is determined by the asymmetric component of the distribution 
of two-center components of p~l,~t. If ~o is antisymmetic with respect to o% it is 
seen that p22,22 determines the favorable direction of Q'~. The above discussions 
can be applied also to a nondegenerate excited state having nearby higher doubly 
degenerate excited state with the same spin multiplicity. 

3.1.1. Bicyclo[1.1.1]pentane-2,4,5-triyl anion. The geometrical structure with 
respect to the interatomic separations between the three unsaturated C atoms of 
this anion is governed mainly by the M6bius-type interaction of three 2p AO's, 
X~, X2 and X3 (Fig. 1). Therefore, we can apply the general theory for bond 
distortion, although there is no real bond between unsaturated C atoms. The 
M6bius-type MO's constructed from the three C 2p AO's and the wavefunctions 
for the ground and lowest excited (singlet) states are presented in Table 1. 

A potential energy minimum should be located along mode Q~ (Fig. 2) if the 
SOJT distortion is energetically allowed. In fact, the lowest excitation energy, 

Z 
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• 

Fig. 1. Carbon 2p AO's and the choice of  axes in the bicyclo 
[1. I. l ]pentane-2,4,5-triyl anion 
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Table 1. MO's and wavefunctions for the 
ground and lower excited (singlet) states 
of the bicyclo. 1.1 ]pentane-2,4,5-triyl 
anion 

a Irreducible representations in the round 
brackets are those of the original point 
group (D3h). MO's or state functions hav- 
ing the positive sign are symmetric with 
respect to ~%, and those having the nega- 
tive sign antisymmetric. The same 
expression is used in the following Tables 

MO's 

1 
4h (e ' ,  q-)a = ~22 (/tv2-- X 3) 

1 
q52(e', --) = ~66 (2X~-X2-X3) 

1 
6~(a~, - )  = ~ ( x ,  +x~ +x~) 

43 

State wavefunctions 

~/'o(A], +)a= I1T2~I 

0~,(E, +)= ~22{[11231-111231} 

O~2(E, - )  = ~=-{122131 -122i31} 
,/2 
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Fig. 2. The SO coupling modes in the bicyclo 
[ 1.1.1 ]pentane-2,4,5-triyl anion 

1 t 

3 2 3 2 

Qip % 

E~ - Eo, of  the an ion  calculated by using the C N D O / S  M O  method  is 1.6 eV, 
the value being cons iderably  smaller  than  the critical value (ca. 4 eV) for  the 
occurrence  of  the SOJT angle bending  [3]. Since &o is symmetr ic  with respect  to 
0% along which of  the posit ive and negat ive directions o f  Q'I the energy m i n i m u m  
exists is de te rmined  by the distr ibutions of  two-center  componen t s  of  pl ~,~ 1, which 
is expressed  in terms of  the MO's  as 

2 2 2 
Pl 1,11 = 2q~l + t~2 4- t~3 (5) 

The c o m p o n e n t  4~l 2 + ~b~ + 6 2 of  Pl ~,~1 is total ly symmetr ic  in the original poin t  
group,  and the asymmet r i c  componen t  is 4~ 2. The distr ibution of  the signed values 
of  the two-center  componen t s  of  th~ shown in Fig. 3 indicates that  the energy 
m i n i m u m  should be  located along the negat ive direct ion of  Q]. In  view of  the 
smallness of  E ~ -  Eo, the energy lowering along the negative direct ion of  Q'I is 
expected  to be  fairly large. 

Our  conclus ion  that  the stable geometr ical  structure of  the anion is o f  Y shape 
is in ag reement  with the theoreical  result by Stohrer  and Hof fmann  [4], who 
calculated the potent ia l  energy surface for  the anion by using the extended Hiickel 
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Fig. 3. Two-center components of ~b~ in the 
bicyclo[1.1.1]pentane-2,4,5-triyl anion (left) 
and the tricyclo[2.1.0.0]pentane-5-yl anion 
(right). S is the overlap density between the 
neighboring MO's (S<0)  

MO method and concluded that the stable structure of the anion is tricyclff' 
[2.1.0.0]pentane-5-yl anion shown in Fig. 3. 

3.1.2. The IB~u and 3B~, excited states of benzene. It is well known [5] that the 
second excited singlet state, 1 ~b2(Bt ~), and the first excited triplet state, 3~b~(Bt ~), 
of benzene undergo the SOJT bond distortions by coupling with the third excited 
singlet state, 1~3(E I u), and the second excited triplet state,302(E~ u), respectively, 
through the E2~ modes (Q~ and Q~, shown in Fig. 2 of Ref. [1]). If we confine 
ourselves to the singly excited 7r-electronic states, OP(El,)J(oH=/oQ~)olg,(E~,)) 
(qJ(E1,) = t~b3(E~,) or 30z(E~,)) is vanishing, since the distributions of charge 
densities of 1'03(E1,)12 and I3~O2(E~,)[ 2 are both totally symmetric. In order for 
the product of matrix elements not to vanish, we have to invoke at least doubly 
excited or-electronic states, which are very high in energy. Thus, we conclude 
that the difference in energy between the quinoid and antiquinoid forms should 
be very small. According to the calculated results by Nakayama et al. [6], who 
used the Pariser-Parr-Pople type CI MO method with the two sets of empirical 
parameters, in ~b2(B~ u), the antiquinoid form is lower in energy than the quinoid 
one by 0.0 and 2.4 kcal mol -I and in 3~01(B1,), the quinoid form is lower in energy 
than the antiquinoid one by 1.8 and 1.9 kcal tool -~. 

3.2. Molecules having the degenerate ground state 

3.2.1. The cyciopropenyl radical. If the radical is assumed to belong to D3h, the 
ground states (~b01 and ~/'o2) belong to E" of D3h, and the FOJT active modes (Qt 
and Q2 in Fig. 1 of Ref. [1]) belong to E'  and are of Type 1. As has been shown 
in Ref. [1], a potential energy minimum is found along Q~, and its location is 
governed by the coefficients of the second and third powers of Q1. The excited 
states that are effective for the second-order coupling belong to A~', A~ and E". 
Now according to the Pariser-Parr-Pople half-electron SCF MO calculations by 
Kuhn et al. [7], the energy differences between the ground state and the above 
active states are larger than ca. 8 eV. Therefore, the energy lowering due to Eq. 
(3-2) for ~'o~ and ~o2 are both very small and almost the same. Since the above 
excitation energies appear also in Eq. (3-3) as denominators, we conclude that 
the difference in energy between the two forms, an oblate triangle and a prolate 
triangle form, due to the second- and third-order effects should be very small. 
The ab initio (STO-3G) optimization of the geometrical structure of the radical 
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by Davidson and Borden [8] shows that the prolate triangle form is lower in 
energy than the oblate triangle one only by 1.0 kcal mol -~. 

3.2.2. The cyclopentadienyl radical. The FOJT active modes (Q~ and Q2) belong 
to EL (Fig. 4) and are of Type 2. It has been shown in Ref. [1] that in the framework 
of the third-order approximation with respect to the FOJT active modes of Type 
2, we cannot differentiate between the potential energies along Q~ and Q2. The 
ab initio (STO-3G) calculation incorporated with the full ~r-configuration interac- 
tions shows that the energy difference between the two forms is actually zero [9]. 

In the radical under consideration, the second-order vibronic coupling of the 
ground states with the lowest excited state, 0~(A~), is possible, the SO coupling 
modes being belonging to E~ (Fig. 4), However, according to Kuhn et al. [7] the 
energy gap E l -  Eo is calculated to be larger than 3.0 eV,which is considerably 
larger than the critical energy gap (ca. 1.2 eV) for the occurrence of the SOJT 
bond distortion [10]. Therefore, the SOJT bond distortion does not occur in this 
radical. 

Our conclusion as for the cyclopentadienyl radical is that the potential energy 
profiles along Q~ and Q2 are quite similar, and the radical is liable to the 
pseudorotation about the central conical peak of potential energy surface. 

3.2.3. The cation and anion radicals of  benzene. The FOJT active modes in both 
the radicals belong to E2~ and are classified into Type 1. According to the general 
theory of Ref. [1], a potential energy minimum should lie along Q~ (Fig. 2 of Ref. 
[l]). The bond distortion along the positive direction of Ql leads to an antiquinoid 
form and that along the reverse direction to a quinoid form. In order to energeti- 
cally differentiate between the two forms, we now examine the third-order term 
(Eq. (3-3)). In the cation radical, in order that the third-order effect may be 
operative, the matrix element (tPo(Eig)l(OH~/OQi)ol~b,(Fo,,)), ~bo and Q/being ~bol 
or ~bo2 and Q~ or Q2, respectively, must not vanish. F,,.'s that satisfy the above 

Olp(E2 ) Q2 (E'2) 

Fig. 4. The FOJT active modes, Q~ and Q2, and SO 
coupling modes, Q~ and Q~, of the cyclopentadienyl 
radical Q~p(E~) Q'z(E~ ) 
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condition are B~g, B2g, and E~. On the other hand, according to the MO 
calculations by Kuhn et al. [7] and Nakayama and I 'Haya [11], all the excited 
states belonging to these representations are higher in energy than the ground 
state by more than 7 eV. Furthermore, in the anion radical, all the relevant excited 
states (belonging to A~u, A2,, and E2u) are higher than the ground state by almost 
the same amount [7, 12]. We thus conclude that in both the radicals, the difference 
in energy between the two forms is very small. This is in agreement with the 
theoretical results obtained by using the semiempirical SCF CI MO method by 
Nakayama and I 'Haya that in the cation radical, the quinoid form is lower in 
energy than the antiquinoid form only by 0.2 kcal tool -1 [11], and in the anion 
radical, the two forms have almost the same energy [12]. The recent ab initio 
(STO-3G) calculation by Hinde et al. [13] shows that in the anion radical the 
difference in energy between the two forms is only 0.1 kcal mo1-1. Using ab initio 
(6-31G) MO method, together with the configuration interactions including the 
single and double excitations constructed from ~--MO's, Raghavachari et al. [14] 
have recently shown that in the cation radical, the two forms have almost the 
same energy. 

3.3. Molecules having the electronic configuration . . .  (e )  2 [15] 

If we assume a molecule having the above electronic configuration to have the 
most symmetrical molecular geometry belonging to the highest point group, the 
ground state is a triplet and the next higher states are doubly degenerate singlets 
except for molecules of a certain type such as cyclobutadiene in which Hund's 
rule is violated [16]. Here we do not treat such unusual molecules (note that 
molecules belonging to D 4 n h ( n  >-- 1) are excluded from our treatment for other 
reasons [1]). We are concerned only with the potential energy curves of the singlet 
states, the energetical differentiation between the undistorted triplet and a dis- 
torted singlet being out of our question. 

3.3.1. Bicyclo[1.1.1]pentane-2,4,5-triyl cation. Using the MO's shown in Table 1 
and taking into account configuration interactions, we can construct wavefunc- 
tions for the lower excited singlet states as shown in Table 2. The lowest degenerate 
singlet states undergo the FOJT distortion only after the configuration interaction. 
Therefore, it is concluded that the FOJT effect is very small. 

The FOJT active modes, Q1 and Q2, corresponding to Q~ and Q~, respectively, 
shown in Fig. 2 belong to E'  and are classified in Type 1. As has been shown in 
Ref. [1], an energy minimum should be found along Q1, and by taking into account 
the second-order terms with respect to Q~, we can determine along which of the 
mutually opposite directions of Q~ the energy minimum is located. Now, it is 
shown that the distribution of the two-center components of pol,0~ (nontotally 
symmetric) = - 2 c c ' q ~ l q ~  3 "~C'2~ 2 matches the angle distortions along the positive 
direction of Qb Qlp,  and that of po2,o2 (nontotally symmetric)= 2cc't~lq~ 3 q-c '2~  2 
matches the angle distortions along the negative direction of Qb QL,. The most 
dominant second-order terms with respect to QL are due to the couplings of 
~bo~(E') and qJo2(E') with ~O~(A~). It is shown that the distribution of two-center 



Potential energy profiles along vibrational modes 

Table 2. Wavefunctions for the ground and lower excited (singlet) 
states of the bicylo[l, 1.1 ]pentane-2,4,5-triyl cation 

Without configuration interactions including 

r p 1 ~ - 
~ho~(E, +)=~22{[111-[221} 

1 - 
qJ~z(E', - )  = ~2{[ 121- IT21} 

t~'](a~, +) =~22{11T I +[221} 

q4~(E', +)=~{ll~l-IT31} 

O~2(E', - )  = ~2 {1231- t231} 

With the (singly excited) configuration interactions including 

qJoa(E', +)= c~,~,-c'q,h =~2{11il - c' _ _ -1221} - 722{[13[- [131} 

t r - - C~ 
~bo2 (E',  - )  = c0~ 2 + c ~b~2 = --~{112[ -I1 21} +-7{[231 -1231} 

-/2 42 

~bl(A~, +) = ~b~ 

~ 2  - C _ _ q~21( E',  + ) =  c'~bDl +c011 = {11T1-1221}+~22{[131-1131} 
C '  - - C _ _ 

ff122( E ' ,  - - )  = r  - C l ~ 2  = ~22{[ 1 2 [ -  1121} - ~  {1231-123q} 

c and c ' > 0  and c2+c '2= 1. 
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components of pOl.1 (nontotally symmetric)= c(~b~-qS~)-c'tkl~b 3 matches the 
angle distortions along Q1, and that of P02,1 (nontotally symmetric)= 2c~b~b2+ 
c'~b2~b3 matches the angle distortions along Q2- Thus, it is revealed that the 
second-order terms energetically favor the distortion along Qlp and, consequently, 
a T-type form. The energetically most dominant third-order term with respect 
to Qt is (~o,l(on~/~O,)olt~,>(qJ,[(OH~/aOt)ol~zt)(~2,[(oH~/oQ,)o[~Pol)Q~/(E ,_  
Eo)(E2- Eo). The examination of the distribution of tWo-center components of 
Pol,lPl,21P21,01 reveals that the T-type form would further be stabilized by the 
above term. However, the actual energy lowering due to the third-order term 
should be quite small on account of the large value of E2 - Eo (ca. 10 eV). Further, 
term A can be neglected because of the smallness of the FOJT effect. All the MO 
calculations of the geometrical structure of  the cation so far made [4, 17, 18] 
show that the T-form (the pyramidal form (C4~)) is lower in energy than the 
Y-form. However, all these calculations are insufficient in the sense that the 
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configuration interactions are not taken into account. Further, in these calculations 
a comparison between the energies of the T-form singlet and the triangular triplet 
has not been made. Finally, it is remarked that in the cation under consideration, 
the potential energy profiles along Qlp and Q~ ~ can be differentiated by the terms 
up to the second-order, which is due to the fact that the most important second- 
order active excited state is nondegenerate and it couples only with one of the 
ground states, ~bo~. 

In addition, it is interesting to mention the geometrical structures of the cyclopro- 
penyl anion and the triaziridenyl dication. The electronic features of the various 
states of these molecules are quite similar to those of the cation discussed just 
above, particularly in the sense that the second-order active excited state is 
nondegenerate, the other states being very high in energy. It is therefore expected 
that in both molecules an oblate triangle form corresponding to the T-form of 
the above cation is more stable than a prolate triangle form. Davidson and Borden 
[8, 19, 20] have analyzed the potential energy profiles along the FOJT active 

�9 modes (Fig. 1 of Ref. [1]) of the anion and the dication on the basis of the 
perturbation theory and reached the same conclusion. Further, ab initio calcula- 
tions show that an oblate triangle form is lower in energy than a prolate triangle 
one by 7.3 kcal tool -~ for the anion [8] and by 8.6 kcal mol -l for the dication [20]. 

3.3.2. The cyclopentadienyl cation. Unlike in the molecules treated above, the 
FOJT active and SO coupling modes in this cation belong to the different 
irreducible representations, i.e. E~ and EL, respectively (Fig. 4). The state func- 
tions including ~--configuration interactions (Tr-CI's) and ~r-MO's are presented 
in Table 3. The FOJT effect should be very small since it becomes operative only 
if the 7r-CI's are taken into account. On the other hand, a strong SOJT effect is 
expected since the most important SOJT active state is the nondegenerate lowest 
excited state, ~bt(A~ ). According to the general theory of Ref. [1], the SOJT energy 
lowering along Q~ is larger than that along Q~. We then consider the third-order 
terms with respect to Q~. In order to use the lowest excited state ~b~(Al) as an 
effective excited state in the third-order terms, a relevant excited state ~(F~, n) 
higher in energy than ~ must satisfy the following conditions: A~ • _~ E~ and 

! : D  ; E2 x F , ~ _  E2. However, there is no irreducible representation that satisfies the 
above conditions in Dsh. Moreover, since EL • E~ = A'I +A~ +E~, excited states 
belonging to EL do not contribute to the third-order terms. Finally, it is shown 
that the product of matrix elements (~bol(E~)l(OH~/aQ~)o[~bn(E'l)) • 
(~bn(E~)[(OH~/aQ~)o[~bn(E~))(~bn(E~)[(OH~/OQ~)oI~o~(E~)), ~l'n being ~2~ or ~4~, 
is group theoretically nonvanishing but very small: if the state functions without 
configuration interactions are used, pol,2~ and P41,41 belong to E~ and A'j, respec- 
tively, so that the matrix elements including these terms are vanishing. The 
third-order terms with respect to Q] are thus all very small, and we conclude 
that we cannot actually differentiate between the potential energy profiles along 
Q]p and Q],. Borden and Davidson [9, 19] have optimized the geometrical 
structure of the cation by using ab initio (STO-3G) full zr-CI MO method. 
According to their results, the local energy minima are found along the positive 
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Table 3. 7r MO's and wavefunctions after configuration interaction for 
the ground and lower excited (singlet) states of the cyclopentadienyl cation 

~" MO's 

1 
,#~(a~, +) = ~55(X~ +X2 +X~ +X4 +Xs) 

$2(e~, + )=  (x l+ax2+bx3+bx4+ax5)  

ck3( ei', - )  = ~ (  cx2 + dx3 - dx4 - cxs) 

]-22 
q54(e~, - )  = ~-~(  dxz - cx3 + cx~ - dx 5) 

[22 
cks(e~, +) = ~/ 5(X1 +bx2 +ax3 +ax4 +bXs) 

a = cos ~r, b = cos {Tr, c = sin ~r, and d = sin ~zr 

State wavefunctions 

C . . . .  r  - _ 

r +) = ~2{111221- l11331}-2{11125[- 11T25[- I1T341+ [1]34[} 

C - - -  - -  C t . . . . . .  

~'02(EL - )  -- ~22{111231- I11231} +~{[ 11241- [11241 +111351-111351} 

t 1 - _ 

r  +) =~22{t11221 +]1T33t} 

d _ _  _ d'  
1~21 (E ~, +) = ~22 {[12331 - l12351} - 2 {ll i25[ - [1~51 +[1T341 - I  1~4[} 

d . . . .  d . . . . .  
r - )  = ~{113221-113221} -2{111241- ]1124 t -11135[ +]1•51} 

C t . . . .  C - - 

~31(E~, +) = ~22{I 11221 - I  11331} +2{11125[ - [ 1T25[ - ] 1 i33,1 +111341} 

C t _ _ _ _  f ~  

$32(E~, - )  = -~22 {ll 123[- I11231} +2 { 1 i27r -111241 +[1 i351 -[1~5[} 

d '  _ _  - - d . . . . . .  
r (El ,  +) = ~2 {112331 -I12331} +~ {[I 1251 -I1125[ +11134[ -I1134[} 

, d '  - - _[i32~[}+d{llT2~[ qJ42(E,,-) =~2{113221 - 111241 - 111351 +I1T35I} 

e and c '>O and e2+e '2= 1. 

d and d '>O and d2+d '2= 1. 
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and negative directions of  Q~ and the two minima have almost the same energy. 
The true energy minimum corresponds to the triplet state belonging to D s h  , and 
they have concluded that the pseudorotation about the Dsh energy minimum 
should be essentially free. The pseudorotation is essentially free if the potential 
energy curves along Q~ and Q~ are almost the same, that is, if the numerical 
coefficient b~ of  the second-order term with respect to QI in Eq. (15) of Ref. [1] 
is accidentally very small. 

The cyclopentadienyl cation is one of  the typical examples in which the SOJT 
effect predominates over the FOJT effect. 

4. Concluding remarks 

The molecular symmetries and shapes of  the conjugated molecules predicted by 
examining the potential energy curves expanded in the power series of  the relevant 
modes, including up to the cubic power are in good qualitative agreement with 
those predicted by using the various MO methods and available experimental 
ones. 

The most critical assumption we have made is the neglect of  the matrix elements 
including/3"(r) and/3'"(r)  (Eqs. (2.1), (2.2), and (2.3)). In fact,/3"(r) and /3"( r )  
are not necessarily negligibly small, even though/3(r)  can safely be approximated 
to be a linear function of  r. The error in energy due to the neglect of  fl"(r) and 
f l"(r)  may amount to the ca. 2 kcal mol -~ in some cases (the 1Blu and 3B~ u excited 
states of  benzene and the cyclopropenyl radical). Our method should be accepted 
within the limit of  this error. 

Appendix. Estimation of the values of the nuclear anharmonic terms for bond 
distortions in conjugated hydrocarbons 

We first assume for a conjugated hydrocarbon the o ' -  ~r separability. The value 
of  the anharmonic term of  the @-core energy, E~, (1/6)(03E~/oQa)oQ3, for bond 
distortion can be estimated as follows. The bond order-bond length relationship 
including up to the third-order anharmonic term can be written as 

r = r ~  k3 l 

where k2 = (OeE~/Or:)o, k3 = ( 0 3 E , ~ / O r 3 ) o ,  p is the bond order, fl' is the first 
derivative of  the resonance integral /3, and ro is the bond length of the single 
bond between the approximately sp 2 hybridized carbon atoms. Substituting the 
bond orders and observed bond lengths of  ethylene, benzene, and graphite into 
Eq. (AI), we can determine the values of ro and k 2 / k  3. In order to determine the 
value of  k3, we use the equilibrium condition (OE/OQb)r=l.397=O, where Qb is 
the breathing mode for benzene and the force constant kb = ( O a E / O Q 2 b )  r=l.397 �9 

The total energy E is taken to be the sum of  E~ and E~: 

E~(r) = E ~ + 3 k 2 ( r -  to) 2 + ka(r -  ro) 3 (A2) 
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E=(r) = 6c~ +8/3 - 3  19 (A3) t2 'Yl  I -- 6-~/14 

The functional form of /3  is assumed to be /3(r) = -2 .38  e x p ( - a ( r -  1.397)) eV 
and that of  the electron repulsion integral, 7, to take Mataga-Mi~;himoto's formula 
[21]. We thus determine the value of k 3 to  be -85 .50  eV/~-3. For a triangular 
conjugated hydrocarbon belonging to O3h , Q1 = ( 1 / ' , / 6 ) ( 2 A r l  - A r  2 -Ar3) and the 
anharmonic term is written as 

1 I/c)3Ecr~ 3 k3 ~ (~(~=l'e).~3Q3~ 8 5 . 5 0  
6 ~ - ~ ) o Q ' = 6 , = , \  aQ, /o  6 - ~  0 3 e V  (A4) 

where re is the equilibrium bond length. If we assume a rather large value of 
0.1/~ for Q1 we obtain 

1 [03E~'~ 3 
~ - ~ - 3 ) o 0 1 _  , , -  : -5 .82  • 10 -3 e V :  -0 .13 kcal tool-' .  (A5) 

For larger molecules, the anharmonic term should be smaller on account of a 
smaller normalization constant in Q~(r l , . . . ,  ri , . . .) .  Obviously, for Q2 the third- 
order nuclear anharmonic term is vanishing. 
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